18/06 – Startup Career Day Tor Vergata 2018

 

 

Startup, come si crea e come ci si lavora. A Ingegneria Tor Vergata, il 18 giugno, una giornata d’incontro con le startup che operano nel territorio laziale.

 

Imparare i segreti di una startup o cominciare a lavorare per una startup? Il 18 giugno non prendere impegni: dalle ore 9:30 alle 16 circa, alla macroarea di Ingegneria dell’università di Roma “Tor Vergata”, puoi incontrare giovanissime aziende nello Startup Career Day Tor Vergata 2018.

Grazie alla presenza di aziende selezionate da Lazio Innova sarà possibile assistere alla presentazione delle idee innovative che sono dietro a una startup e prendere contatti con il mondo del lavoro più smart.

Le startup animano la conferenza che ha inizio alle 9:30, in Aula Convegni, presentando la loro idea di innovazione e i loro progetti, insieme a Lazio Innova che spiegherà il percorso di come da una idea si passi a una startup. La mattina stessa sarà possibile prenotare un incontro con le singole aziende.

Nel pomeriggio, Startup Meeting Session: ogni azienda incontra singolarmente gli studenti che si sono prenotati, valutandone le eventuali candidature.

L’evento, curato dalla Macroarea di Ingegneria assieme all’Ufficio Placement dell’università di Roma “Tor Vergata” e da Lazio Innova, offre un’opportunità da prendere al volo per gli studenti di Ingegneria, Economia e Scienze del nostro ateneo, che stiano concludendo il percorso della Laurea Triennale, della Laurea Magistrale, o che siano dottorandi, dal momento che possono approcciare aziende stimolanti per un tirocinio, uno stage o altra forma di collaborazione.

Dal canto loro le startup, che operano nell’ambito di IT, microelettronica, IoT, mobilità e space-tech, cercano giovani menti qualificate con cui collaborare e condividere progetti all’avanguardia.

Prenota la tua partecipazione all’evento su EventBrite http://startup_career_day_tor_vergata_2018.eventbrite.it/

————————————————————————————————————-

Programma della giornata

Ore 9:30 – INIZIO CONFERENZA

 

Saluti istituzionali                Prof Silvello Betti, Coordinatore della Macroarea di Ingegneria

Luigi Campitelli, Direttore Spazi Attivi e Open Innovation, Lazio Innova

Introduzione startup           Roberto Giuliani, Coordinatore Spazio Attivo Roma Tecnopolo

Presentazione delle Aziende

 

Ore 14:00 – STARTUP MEETING SESSION

Cerotti 4.0: sulla nostra pelle la realtà aumentata

Dalla misurazione della febbre, alla misurazione della temperatura di ciò che tocchiamo; dall’analisi delle sostanze chimiche intorno a noi fino all’analisi del respiro: il supporto adesivo sulla pelle umana può ospitare antenne e strumenti altamente tecnologici che comunicano in modalità wireless con altra strumentazione avanzata per analizzare l’ambiente circostante, monitorare parametri biologici essenziali e difenderci. Grazie anche al progetto RadioSkin.

Il gruppo di ricerca del prof. Gaetano Marrocco, docente di Tecnologie Elettromagnetiche per Sistemi Wireless, Radio Sistemi Medicali e Progettazione Avanzata di Antenne, nella facoltà di Ingegneria dell’università di Roma “Tor Vergata”, ha sviluppato, anche grazie al progetto RadioSkin, sofisticati strumenti ‘indossabili’ studiati proprio per poter completare con successo l’ “ultimo metro” della Internet of Things soprattutto nei campi della salute, della medicina e della diagnostica.

Sono state progettate e realizzate pellicole adesive ultratecnologiche che incorporano sensori e antenne. Si trasformano esse stesse in strumenti di rilevamento e sono silenti finché non sono vicine allo strumento che permette di leggere i dati rilevabili: accostando loro un lettore, anche integrabile in uno smartphone, questo le alimenta in modalità wireless tramite i propri campi elettromagnetici e legge i dati memorizzati nella loro memoria.

Sono radio-sensori basati sulla tecnologia di Identificazione a Radiofrequenza (RFID): gli stessi patch anti-taccheggio che già troviamo nei libri, nelle etichette dei vestiti come evoluzione dei codici a barre. Ma ora diventano in grado di ‘sentire’ l’ambiente in modo discreto ed economico.

L’ultimo progetto riguarda un cerotto da applicare sotto il naso con cui poter monitorare da remoto la frequenza del respiro e poter vedere quando ad esempio ci troviamo nelle apnee notturne. Questo progetto ha permesso alla dottoranda Maria Cristina Caccami di vincere il premio Best Student Paper alla EUCAP 2017 – European Conference on Antennas and Propagation (Paris).

Secondo il prof Marrocco, che ha fondato lo spin-off RADIO6ENSE (http://www.radio6ense.com), questo è “il primo dispositivo flessibile, bio-compatibile e non invasivo per il monitoraggio wireless del respiro capace di integrare un sensore composto di un nanomateriale, l’ossido di grafene che, come è ben noto, data la sua natura igroscopica, offre vantaggiose capacità di sensing per potenziali applicazioni biomediche”.

 

Un cerotto per il respiro.

Respirare è un atto fisiologico e naturale che compiamo di continuo e che garantisce il necessario apporto di ossigeno per la nostra sopravvivenza. Sebbene la respirazione sia comunemente vista come una semplice funzione autonoma, l’insorgenza di condizioni cliniche e patologiche, spesso a carico del sistema nervoso centrale (SNC), oppure stati di eccitazione eccessiva o stress, come alcuni tipi di attacco di panico, possono causare l’alterazione del fisiologico susseguirsi degli atti respiratori e soprattutto della frequenza.

L’analisi del respiro rappresenta un utile indicatore dello stato di salute di una persona, ricoprendo un ruolo importante nella gestione clinica di malattie responsabili dell’alterazione della dinamica respiratoria. In particolare, il monitoraggio della frequenza e dei pattern respiratori sia nel caso di individui sani o in stato di stress, che nel caso di pazienti affetti da quadri clinici tali da compromettere le capacità funzionali dell’apparato respiratorio, consente non solo l’identificazione e la diagnosi precoce di complessi quadri sindromici come la sindrome ostruttiva delle apnee notturne, l’arresto cardiaco, l’asma o la malattia polmonare ostruttiva cronica, ma anche la caratterizzazione e classificazione di nuovi disordini respiratori.

Inoltre, tecniche di monitoraggio basate sull’identificazione di biomarkers e composti volatili organici nel respiro esalato possono essere considerate un approccio promettente in quanto permettono di monitorare in maniera non invasiva lo stato di infiammazione delle vie aeree o di infezioni, come la polmonite associata a ventilazione (VAP) e il cancro ai polmoni, nonché valutare gli obiettivi delle moderne terapie nei trial clinici.

Le convenzionali metodiche di monitoraggio sono tuttavia costose e non confortevoli in quanto richiedono generalmente l’inserimento di sonde e cannule nasali nonché l’utilizzo di attrezzature ingombranti e scomode come ad esempio strette fasce toraciche all’interno delle quali sono integrati i sensori di respirazione. Inoltre, la presenza dei cavi per permettere la connessione ai sistemi di acquisizione dei dati e la complessa circuiteria rendono difficoltoso l’uso prolungato di tali dispositivi necessario ai fini di un monitoraggio continuo.

I successivi passi della ricerca prevedono l’integrazione del sistema in un comune cerotto nasale anti-russamento e la funzionalizzazione chimica e biologica dell’ossido di grafene attraverso il legame di molecole target alla struttura reticolare del nanomateriale, allo scopo di analizzare la composizione chimica del respiro esalato dall’organismo affiancando esami più tradizionali nell’identificazione di particolari patologie o nella rilevazione di sostanze dopanti.

Un esempio di applicazione è visualizzatile all’indirizzo:

https://www.youtube.com/watch?v=cEbpfayG38c

 

Un cerotto come pelle umana.

Un device tecnologico può aiutare nel caso di poca sensibilità della pelle. La pelle umana è la primaria interfaccia d’interazione bidirezionale dell’uomo con l’ambiente circostante, continuamente campionata dal sistema nervoso centrale che convoglia flussi di dati dall’interno del corpo verso l’ambiente esterno e viceversa.

La pelle include un complesso sistema di sensori in grado di acquisire non solo segnali sulla forma e la consistenza di un oggetto, ma anche di sentire il calore dello stesso e calibrare le modalità della propria interazione con l’ambiente circostante.

In alcuni casi la sensibilità periferica degli arti è però minata da disturbi neurologici (Neuropatia Periferica) causati da danni alle vie nervose responsabili per la ricezione, la trasmissione o l’elaborazione di stimoli esterni quali il tatto ed il calore. Il deterioramento della sensazione del calore ha un rilevante impatto sull’esecuzione delle operazioni più comuni che richiedono di discriminare la temperatura delle cose quotidiane (piatto, ferro da stiro o acqua del bagno). Questa sofferenza funzionale può anche provocare gravi ustioni.

Nell’era dei Dispositivi Wearable, dell’Elettronica Bio-integrata e della Scienza dei Dati, i tempi sono maturi per ipotizzare un’interfaccia elettronica che espanda e/o ripristini le naturali capacità della pelle umana di interagire con il mondo esterno. Tale interfaccia potrebbe acquisire gli stimoli provenienti dal mondo esterno, quantificarli e produrre un supporto informativo di rapida comprensione per l’utente. Avrà la possibilità di stabilire corrette e addirittura nuove interazioni con gli oggetti superando eventuali limitazioni fisiche ma anche espandendo le potenzialità dei normali sensi tramite una ultra-abilità (Ultrability) sensoriale.

Questa dotazione tecnologica deve però essere mininvasiva e non aggiungere complessità funzionale alle normali azioni compiute dalla persona. In altri termini bisogna evitare collegamenti con cavi e realizzazioni che siano percepibili come una dimensione protesica ingombrante e, potenzialmente, discriminante.

È stato messo a punto Il sistema RADIOFingerTip per integrazione sui polpastrelli delle mani (presentato al congresso internazionale IEEE RFID 2017 IEEE Radiofrequency Identification a Phoenix), inizialmente concepito come ausilio per il ripristino della sensibilità periferica in pazienti deafferentati. Questi soggetti, mancando di sensibilità tattile vivono le normali attività quotidiane, quali regolare la temperatura della doccia, toccare inconsapevolmente un oggetto bollente, sfiorarsi la pelle per percepire se si è bagnati o assaggiare una pietanza calda, come situazioni potenzialmente molto pericolose. Questa disabilità può infatti causare ustioni di diverso grado, provocando danni persino irreversibili e comunque notevole disagio sociale.

Il sistema è composto di due moduli progettati per garantire vestibilità, basso impatto estetico e per non essere d’intralcio nei movimenti quotidiani: un piccolo radar indossato a mo’ di braccialetto che interroga un radio sensore privo di batteria, aderente al polpastrello, che a sua volta esegue una rapida misurazione in tempo reale della temperatura dell’oggetto. I primi test hanno dimostrato che è sufficiente appena mezzo secondo contatto per stimare con l’accuratezza di un paio di gradi la temperatura reale dell’oggetto.

In base al valore rilevato, il lettore potrà poi generare uno stimolo acustico o visivo per avvertire l’utente di eventuali pericoli, nonché per fargli comunque percepire la fisicità dell’oggetto. In questo modo i danni associati all’ipoestesia potranno essere radicalmente ridotti con conseguente beneficio per la qualità della vita dell’utente.

Il sistema RadioFingerTip, messo a punto durante la tesi di laurea magistrale in Ingegneria Medica dell’Ing. Veronica de Cecco, nell’ambito del progetto di ricerca RadioSkin finanziato dall’Università di Roma Tor Vergata, è attualmente in fase di perfezionamento e verrà presto dotato di altri sensori per acquisire la pressione del tatto ma anche il pH degli oggetti, producendo così una vera percezione aumentata della realtà.

Il dispositivo potrà essere inoltre utile come ausilio alla diagnostica clinica basata sulla palpazione permettendo infatti di aggiungere alle informazioni tattili soggettive raccolte dal medico una misura oggettiva che quantifichi per esempio la percezione del medico della tensione muscolare del paziente, la presenza di un nodulo ma anche di eseguire una prima analisi chimica dell’essudato.

Un esempio di applicazione è visualizzatile all’indirizzo https://youtu.be/DGUkYqmt-5Q

 

Il cerotto-termometro

Il dispositivo si presenta come un sottile cerotto trasparente, simile a quelli utilizzati per curare le piccole abrasioni dei piedi, resistente all’acqua e traspirante. Nel cerotto è integrata un’antenna e un minuscolo microchip delle dimensioni di pochi millimetri che contiene un codice identificativo, una piccola memoria riscrivibile e un sensore di temperatura capace di rivelare variazioni di un quarto di grado fino a 65°C. Quando il cerotto si trova all’interno di un campo elettromagnetico, l’antenna raccoglie l’energia necessaria ad alimentare il microchip che si accende e, a comando, esegue una lettura di temperatura del corpo che lo ospita e trasmette il dato verso un dispositivo interrogante fino alla distanza di un paio di metri. Quest’ultimo può essere un lettore portatile, grande quanto un portachiavi, oppure un varco simile a quelli che si trovano ormai in molti negozi per il controllo degli oggetti acquistati.

Il cerotto è stato già sperimentato nell’attività sportiva per valutare l’incremento di temperatura durante lo sforzo fisico ed è ora in fase di perfezionamento. La procedura di comunicazione utilizzata è standard ed è la stessa delle nuove etichette elettromagnetiche (chiamate tag RFID) che sono ormai utilizzate nella logistica degli indumenti, libri e farmaci a complemento dei codici a barre. “Sarebbe a questo punto possibile immaginare di equipaggiare i passeggeri negli aeroporti con il sensore epidermico – commenta il prof. Marrocco – e controllare poi la loro temperatura nei vari momenti di transito, per esempio durante gli usuali controlli di sicurezza senza insormontabili cambiamenti alle procedure già in essere. Negli ospedali e nei centri di soccorso da campo, le unità di lettura potrebbero essere installate nelle porte di accesso dei vari locali in modo da monitorare lo stato di salute di medici e infermieri che interagiscono con pazienti già contagiati, individuando ed isolando situazioni critiche che richiedano maggiori approfondimenti”. 

“L’interazione positiva tra elettromagnetismo, scienza dei materiali, informatica, medicina, meccanica ed elettronica, che potremmo definire Elettromagnetismo Pervasivo – commenta il prof. Marrocco nel suo sito http://www.pervasive.ing.uniroma2.it – permette di immaginare e realizzare nuove famiglie di radio dispositivi privi di batteria che potranno sostenere la trasformazione di Internet nella Rete delle Cose (Internet Of Things), dove ogni oggetto fisico, equipaggiato con un’opportuna etichetta elettromagnetica, sarà interconnesso alla rete e interrogabile da remoto. Queste nuove entità, per metà reali e metà digitali, aumenteranno la nostra percezione della realtà, fornendo dati preziosi per il miglioramento della salute dell’uomo, la preservazione dell’ambiente e per un uso più razionale delle risorse energetiche”.